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Abstract— The influence of the interfacial phase change on the stability of liquid film flow over a plane is

studied. It is significant in the interfacial mass balance equation only. Evaporation has a destabilizing

influence and condensation a stabilizing one. The thickness variation caused by the phase change is taken
into account. Its effect on the stability is the opposite of the phase change effect.

NOMENCLATURE V,  interfacial velocity vector: V;-m; =
A, film thickness: [L?‘A/ET] [1 + (@4/8X)*] 3,
a,  dimensionless film thickness 2 A/Y,,; Vo Eem)omt (Ve
Br,  Brinkman number £ u,U%/2, A0, ; v, d!menspnless 'transvelrsal velocity = V/ V.';
C,  heat capacity; v dfmensxonlzss interfacial transversal velocity
¢, velocity of the perturbation 2 ¢, + ic;; difference = (Vi — Vi)/AV,;
e, 4 4 1incase of evaporation, 2 — 1in case We, Weber number £ 0,/p,, UL Yy, 5
of condensation: X, dimensionless longitudinal coordinate £
F, external forces; X/X,; .
g, gravitational acceleration Y, t{ansvefsal coordinate (Y = 0 gt the wall);
I enthalpy; Vs dimensionless transversal coordinate: y, £
Fay
Ku, Kutateladze number & C, AO,,/L; Y/¥iiye 2 (Y = Y)Y,
L, heat of vaporization; Greek symbols
1, variation of the thermal conductivity: 4 = o, dimensionless wave number 2 2n Y. /A;
21+ 1©® - e,)]; B, variation of the density: p = p[1 +
M, 2 puglu; O — ©,)];
m,  variation of the viscosity: p = p[l + 7, 2 plpL;
me - e)]; A®,, temperature difference scale;
#t, mass transfer per unit area and per unit of 1, ratio of the length scales £ Y, /X, ;
time & p(V — V) n; ©,  temperature;
n, normal unit vector; 9, dimensionless temperature £
P, pressure ; ® — 0,)/A6,;
Pe,  Péclet number £ U,Y,p,C,/4,; A, wavelength ;
Pr,  Prandtl number 2 4,C,/4,; 4, thermal conductivity;
P*  modified pressure £ P; — gp;, sinQX + ﬂ, dynamic viscosity;
gogcosQ[Y — A(X = 0, T)]; 2 density;
D dimensionless pressure difference £ (P — G, surface tension;
P,)/AP,; ¥,  viscous stress tensor;
P dimensionless interfacial pressure difference Q, angle of inclination of the plane to the
& (P — Pg)/AP,; horizontal.
p*,  dimensionless modified pressure difference
& (P* — P})/AP}; Indices
q, heat flux; G, vapor;
Re, Reynolds number 2 U,Y,p,/1,; i, interface ;
F,  stress tensor; k, 2 (G, Ly;
I3 dimensionless time & T/T; L liquid;
t, tangential unit vector; r, scale;
u, dimensionless longitudinal velocity £ U/U,; S, saturation;
, dimensionless  interfacial  longitudinal w, wall;
velocity difference 2 (Ug — ULYAU,; 0, first-order
v, velogity vector; 1, second-order.
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1. INTRODUCTION

THe rLow of liquid films occurs in some natural
phenomena (rainwater flow) as in many industrial
plant (evaporators, condensers, nuclear reactors, etc.).
The waves which propagate at the film surface increase
the interfacial transfers [1]. A way to predict their
existence is to study the linear stability of the flow.

The studies of the linear stability of isothermal film
flow are numerous [2]. Only some authors dealt with
film flows with wall heat flux and interfacial phase
change. Kocamustafaogullari [3] wuses balance
equations averaged over the film thickness. He
accurately takes into account the phase change
influence but neglects the film thickness variation.
Bankoff [4], Marschall and Lee [5] and Lin [6], take
into account the phase change in the interfacial
momentum balance equation only. A detailed
criticism of the equations they use was made by
Spindler, Solesio and Delhaye [7]. Finally Unsal and
Thomas [8], for a condensation film flow only,
accurately take into account the phase change, but
make some unjustified simplifications.

The aim of this work is to study the linear stability of
a liquid film flowing over an inclined plane with wall
heat flux and interfacial phase change, without any
imposed vapor flow and particularly to make obvious
the phase change influence on the stability.

2. EQUATIONS GOVERNING THE FLOW

2.1. General form

The equations governing the flow are the mass,
momentum and energy balance equations in the liquid
and vapor phase, and at the interface. The fluid is
Newtonian and the variations of its physical properties
are considered. The only material property of the
interface which is taken into account is the surface
tension. No vapor fiow is imposed, but the vapor layer
set into motion by the film flow is considered.

The mass, momentum and energy equations in each
phase read

op
Ff+V'(pV)=0 (1)

pV
%~+V-(pVV)—pF—V~,7=0 2)

é

(pI — P) + V - (pIV)

éT
—V:VP+V-q—-7:VV=0 (3)
The interfacial mass, momentum and energy
equations read [9]
my + g =0 4)
mV,+mgVe—n, -7 — 057 ¢

+ Vo —(V, n)on, =0 (5)
m (I, + % Vi -V, 'Vp) + m g + % V%; - V(; 'vp)
+q. 0, +q, 0 — (7, 0 (V, V)

. do
~—(“I’G~nG)'(VL—Vp)—E=O. 6)

The wall conditions are constant temperature (CT)
or constant heat flux (CHF) and the no-slip condition

CT: ©, =0,
or (7)
c0
C . -—2 —_— =
HF L[}Y qw
v, =0. (8)

The interfacial boundary conditions are the equality
of the liquid and vapor temperature and the no-slip
condition:

®L = @(; (9)
V,t=Vg -t (10)

Finally, the vapor is supposed to be at saturation
temperature, and out of the layer set into motion by the
film flow, the vapor is at rest:

Q; =6

lim Vg =0.

Yoo

(n
(12)

2.2. Simplification methodology

To simplify the problem the order of magnitude of
each term in the dimensionless equations is classically
analyzed. Each variable is referred to a certain scale, so
that the dimensionless variable and its derivative have
a value close to one.

The first stage of the simplification process is to
determine the value of each scale. The following
hypotheses are made
(a) water at saturation under atmospheric pressure is
chosen as reference fluid. The study can be
extended to other fluids if they support the same
simplifications. It is the case for instance of
refrigerant R12;
the ratios ug/u; and pg/p, of the vapor to liquid
viscosities and densities are supposed to be small;
(c) in the moving vapor layer, viscosity forces balance
inertia forces;
on the other hand, in the liquid film, viscosity
forces balance gravity forces, inertia forces being
negligible. Finally, the convection heat transfer is
neglected: the heat flux essentially allows the
phase change to take place.

Considering the dimensionless equations, these
hypotheses lead to the determination of all the scales
[10]. The results are given in Appendix 1. All the scales
are expressed in terms of two of them, the liquid
temperature difference scale A®,, and one of the liquid
length scales, Y,, or X,, or in terms of two
dimensionless numbers, the Reynolds number Re and
the Kutateladze number Ku, which represents the
ratio of the convective heat to the heat of vaporization.

(b

—

d
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As a consequence of neglecting the convection in the
liquid film, the following limitation has to be
introduced

Ku«1
or (13)
Af, « L/C, .

The convection is negligible if the wall to interface
temperature difference (or the wall heat flux) is not too
large. For saturated water under atmospheric pressure
(L=23x10°Jkg™!,C, =42 x 10°Jkg 'K !),a
Kutateladze number limitation of 10~ % corresponds to
a A®,, limitation of 5.5 K.

The main result is the value of the liquid length
scales ratio,

_ Ku
B Pr;Re;

"L (14)
which on account of condition (13) is much less than
one (for water at 100°C, Pr; = 1.7). The significance of
equation (14) is that the conduction heat balances the
vaporization heat (Ku is the convection to
vaporization ratio; #;Pr;Re; is the convection to
conduction ratio). As the transversal to longitudinal
liquid velocities ratio is also equal ton (V,,/U;, = n,),
equation (14) gives an evaluation of the non-
parallelism of the flow, i.e. of the transversal velocity
scale (for the isothermal base flow, V; = 0).

Itis now possible to deal with the second stage of the
simplification process, which is the calculation of the
order of magnitude of the different terms in the
dimensionless equations. Details of this work can be
found in the report by Spindler [10] for the base flow
equations as well as for the perturbed flow equations.

The Kutateladze number is chosen having a value
close to 1072 and the Reynolds number to vary
between 1 and 10 (the limiting value of laminar flow
as given by Fulford [11] is Re = 1200).

Terms with a value close to one (first-order, left-hand
side of the equations below), as well as terms with a
very close to 1072 (second-order, right-hand side of
the equations) are retained. The lower are discarded.

3. BASE FLOW

3.1. Simplified equations
The base flow (steady-state flow) equations are
obtained by setting all the time derivatives to zero.
Liquid balance equations (index L is omitted)

ou Ov ou Ov o0 00
LA YN ] Gl DLt
x T F [ <ax * ay) T Ty
(15)
%u Ju du ép
1+ = s - BAGG - s
+6y2 nRe(u6x+L0y> fAG, +/,+nax
ou 00 ou
—-mA®f— — mA®,— — 16
mA@, 22 m "y By (16)

2
cotg Q + ai’ = —cotg QPAG,H
y
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Bzu]
= (17

+ 2520 26 0u+6v+
1 v 3 y\dx  dy) 8

926 00 o8 2
= nPe(u— + va—> _1nen’?
ou\?
&) 08

6,7 Ox ay
a 2
— IA®, (~0> — Br
0y
Vapor balance equations (index G is omitted)

du v
—+—=0 (19
ox Oy
cu . u . ,op* 0% *u
U L’ay n o 6x2_W=0 (20)
LU S L
dx 8y dy e ot @b
Interfacial balance equations
oL — wd, — v =y, (v — uga,) (22)
y, vy dvg 2%a
y— (b, —upag)? —2——-— = — + Wey,——
R Pl A ALY
= (Z)BLAG)Lr - yr)(UL - uLax)2
2 Y, 00, 06,
— =B AO, ——(u, — + v, — 23
3 B L nLRe, <“L ox,, UL 7. (23)
duy, dug  ni oOvg
——=mRe | —+ =5 — 24
oy - L<6}’G 7" Oxg (24
a6,
vy — Uy + 53— = =B A, (v, —ua,) (25)
ayL
Boundary conditions:
at the wall (y, = 0)
u, =0 (26)
v = 27)
CT: 9, —e=0
or (28)
a0, a0,
c—+e=—1A0,6,
CHF: . L3y
at the interface, y, = a(x,)
u+ap; =0 (29)
AB®g Xy, l: opr 51’14):[
0, =—""="x; | L+l —+a,—}] (30
t AB, X, - ¢ oxy, ay )
Ku* op*
e cha; — N.xg cotg Q (31)
at infinity
lim ug=0 (32)
Yo7
lim v; =0. (33)
Yoo

3.2. First-order solution
Taking into account that the liquid pressure
difference scale is always very large compared to the
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interfacial pressure difference scale, the liquid balance
equations (15)-(18) together with the interfacial
balance equations (23)—(25) and boundary conditions
(26)-(28) and (30) can be solved. The first-order
solution reads

)2

Ug = Aoy — 7 (34)
2

y* dag
o= 2 35
=TT o (33)
Po = cotg Q(ag - y) (36)

CT: 6, = e(l - i)

o

or (37)

CHF: 8, =e(ag — y).
The value of ay(x) depends on the flow configuration:

a flow with a pre-existing film or a condensation film
flow.

3.3 Flow with a pre-existing film

The flow with a pre-existing film (Fig. 1) depends on
both the thermal wall condition and on the initial
thickness, which can be chosen as the transversal
length scale Y,,. The initial dimensionless thickness
then reads

a(0) =1 (38)
and the Reynolds number, in term of the initial
thickness

Re; = gsin QY3 v, (39)

Inserting equations (34), (35) and (37) into equation
(25), we obtain with condition (38) the following
results:

CT: ap = (1 — dex)'*
CHF: g, = (1 — 3ex)!”>.

(40)

In case of evaporation (¢ £ + 1), we can calculate a

dry-out length which is only theoretical, because on
one hand the model used is no longer valid near the
dry-out point, and on the other hand the waves

Evaparation

propagating at the film surface also contribute to the
dry-out process. The theoretical dry-out length has the
following value
XLr _ Yier%,rg Sin Q

4 - 4A®Lr)"Lrqu
_ RePVPLu,
" 4(gsinQ)1P AL,

CT: X; =

(41)
CHF: X. = XLr _ Yls,er;:rg sin _ ReLLqu
- a 3 B 3qwqu B 3qw .

For a vertical flow of saturated water at 100°C (p,, =
9.6 x 10°kgm™3;L =23 x 10°Jkg™!;2,, = 6.8 x
107 'Wm P K™ py, =28 x 107%kgm™! 571,
with A®,, = 55K (Ku = 10"2) or q, = 4 X
10*W m™ 2 (Ku = 1.0 x 107 2for Re; = 93), we obtain

Xr=016m
for Re, = 50
Xp=027m
and
X, =88
T ™ for Re, = 1000.
Xr=54m

3.4. Condensation film flow

A condensation film flow (Fig. 2) depends only on
the wall thermal condition. The initial thickness
condition reads

a5(0) =0 (42)
and leads to the following result:
CT: ay(x) = (4x)'* (43)

which has been well known since the work of Niisselt
(12]

CHF: ay(x) = (3x)! (44)

which was recently obtained by Fujii, Uehara and Oda

[13].

The dimensional form of equations (43) and (44):

4O, A1, X T
CT: Ao(X) = ["L—:”T]
PLd (45)

3 X
CHF: Ay(X) = | ke
Lpt,gsinQ

Condensation
X

Fic. 1. Flow with a pre-existing film.
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X

FiG. 2. Condensation film flow.

are expressed in term of the abscissa X, without any
requirement of the length scale value.

Consequently, we choose the current abscissa X as
the longitudinal length scale X,,, as for classical
boundary layers. The Reynolds number then reads, in
term of the current abscissa,

CT: Re, = [gsin QAOLX*ALoL /L33 ] 46
CHF: Re; = eq, X/Ly,,.

Nevertheless, the model used is not of course valid near
the initial point.

3.5. Second-order solution

The complete second-order solution of the liquid
equations can be found in the report by Spindler [ 10].
Only the dimensionless film thickness (CT) is

presented here. It reads
a(xy) = aglxy) + Kua,(x;) + O(Ku?)  (47)

where ay(x, ) is given by equations (40), (43) or (44) and
a,(x;) reads

9 11 AQ,,
ay(x;) = —e[ao(x,) — ao(0)] {160Pr "~ 160 16KLu
L
ve
x [BL(d4e+3) — 3m, + 2] - 4,Ku +f(xL)}
(48)
with
dr e ag(xy) 0
4
= 3 =|o— e
dag(x) de ef(xL) [Pr,_ 2Pr, axL
« (Pco | n2 6o
a7 0xg
f0)=0. (49)

Equation (48) agrees with the following result of Unsal
[14] for a condensation film flow (e £ —1;a4(0) = 0),
in which neither the liquid property variations, nor the
vapor influence are taken into account

a,(x,) = ao(xL)( (50)

9 11
160Pr, 160/

Vapor flow terms appear in the second-order
solution of the liquid flow. These terms (among others

Ougo/0y;) can be calculated only by resolving the
complete system of equations governing the vapor
flow [equations (19)-(21), (22), (29), (32) and (33)].
This resolution involves heavy calculations except in
the case of condensation film flow with constant wall
temperature and a low value of 5 (classical boundary-
layer type equations).

4. PERTURBED FLOW

4.1. Multiple scale method

The base flow depends on the abscissa x and as a
consequence, a perturbation can be from a
mathematical point of view only be written under the
following form

Sy v t) = F(xp, y ) exp (at,) (51)

(¢ is a complex number).

Nevertheless the multiple scale method, developed
among others by Bouthier [15] and Eagles and
Weissman [16] for quasi-parallel flows (V « U),
assumes a sinusoidal perturbation

f’(xl; Y tL) = F(xl; yL)

X €Xp I;%(Jn o(x)dx — th>] (52)

where the wave number (depending on x) appears as
the x-derivative of the phase function. Only the spatial
stability is considered (¢ complex, @ real) because
precisely the spatial variations of the perturbation
characteristics are taken into account.

This method uses the first and the second order
equations of the base flow as well as of the perturbed
flow. Consequently the main difficulty is the problem of
solving first the vapor base flow and then the vapor
perturbed flow [10]. As a result the multiple scale
method is discarded and replaced by a simpler but less
accurate one, the local approximation method, which
besides is the first step of the multipie scale method.

4.2. Local approximation method

In the local approximation method the x-dependent
flow is replaced by its local value at a fixed abscissa x,,.
The perturbation is then

io
fxpynt)=Fy)exp l:’?_ (x, — CtL):|'

L

We no longer consider the x-dependency of the
characteristics of one perturbation, but we can cal-
culate the characteristics value of a perturbation
initiated at the given abscissa x, only.

The dimensionless wave number « is defined with
Y|, as length scale in order to study perturbations the
wave length of which has values close to the film
thickness.

4.3. Simplified equations

The variables are written asf + f*, where fis the base
flow variable and f” its perturbation. Taking into
account the base flow equations and discarding all the
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nonlinear perturbation terms give the perturbed flow
equations.

The order of magnitude of the different terms is
examined. In this comparison an x- or t-derivative of
a perturbation term corresponds to a multiplication
of function F [equation (53)] by /4, (n, « ).

Only the first-order terms are needed in the local
approximation method and are presented here.
Second-order terms and those corresponding to the
vapor flow can be found in Spindler’s dissertation [17].
From now on, the index L is always omitted.

Liquid balance equations:

o v
S (54)
ax Oy
o' o di
R o - U 0
] e(ét +u°6x -+ 3y v)
ap zézu’ ot
e = )
T T g T =0 9
Gl v op’ % o
ZR 7 LA
" e(a éx) 3 M5 =0 (56
o0 o0 o8, o ? Feadil
g U ) =0.(57
nPe(ﬁt%-uoax-kv 6y> e (e (57)
Interfacial balance equations:
o P, 00
— g — —— =0 58
6y+a 6y2+ry e (58)
p ap
2o 4P +d 22—y w—0 59
WeRen e +p + oy ﬁy (59)
éa  od 80, da, o0F
(N Sha i — 4+ — = 0. (60
Vo T Ty Ve Ty T
Boundary conditions:
at the wall, y = 0
W =0 (61)
v =0 (62)
CT: =0 (63)
o0
CHF: — =0
oy
at the interface, y = ag{x)
i)
&+ a'§~0 =0 (64)
dy

The system (54)—(64) differs from the corresponding
system of an isothermal flow by the coupling between
the thermal and dynamical problems through equa-
tion {60), a combination of the interfacial energy and
mass balance equations. For an isothermal flow, the
corresponding equation reads

(65)

The reason why the phase change appears only in
the interfacial mass and energy balance equations is

the strong limitation imposed on the Kutateladze
number or on the temperature difference scale A®,,.

If, for instance, a value Ku = 0.1 and a value Re =
10 were chosen, the phase change term in the in-
terfacial momentum equation would have an order of
magnitude of 1 (first order), the convection and inertial
terms in the liquid of 0.1, and physical properties
variation terms of 0.5 (viscosity).

Nevertheless, if convection, inertia and physical
properties variation are neglected, the interfacial
momentum balance equation of the perturbed flow
would read (first order)

O*a’ ap, o 2n*Re 80, o0
WeRenz(——7 yp+afo_ & AR Do 7
0x oy ay vy dy @y
2 3 '*2 g
Re 2M
) 9 oxt

Three supplementary terms appear in comparison
with equation (59):

The phase change term
b, oo

&y 0y
and two vapor terms 0, and p*
[Fgolac) = — ajdaq/ox, given in [10]].

Consequently, if the phase change term has to be
taken into account in the momentum balance equa-
tion, the term p*’ has also to be considered, and can
only be calculated after solving the whole vapor
perturbed equations set.

5. STABILITY STUDY

5.1, Eigenvalue system

The following perturbations of the stream function,
temperature and thickness are introduced in the
perturbed flow equations

Yix. 3,0 = d(y) exp[ (x — a)]
it
0 (x,y, 1) = Z(y)exp b— (x — cz)} (67

a{x,t) = Sexp [E;—c {(x — ct)].

After some classical rearrangements, the following
eigenvalue system is obtained (index O of base first-
order system is omitted):

O™V (y) = 2297 (y) + Pl y) =

iaRe
A2

x {(a —l¢"(y) — 2o(»] - j;; ¢(y}} (68)

o
Z'(y) — «*Z(y) = ioPe [(ﬂ —OZ(y) — %;fb(y)] (69)

$(0) =
$'(0) =

(70)
n
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CT: Z(0)=0

CHF: Z'(0)=0
@""(a) + [Reia{c — @) — 30*]¢'(a)
— ia(cotg Q + a’WeRe)S =0 (73)

(72)

¢"(a) + o*p(a) - S =0 (74)
Z(a)+6—gS=0 (75)
oy

s=d@+ L Low-Lza@ 6

i Ox iot

with
A _ n oo

r2c—d@)+— —|. 77)

i Oy,

The four interfacial conditions (73)-(76) can be
reduced to three by eliminating the constant S:

¢""(a) + [Rein(c — i) — 3a*]¢'(a)

_ (cotg Q + a*WeRe)
” c—u

¢(a)=0 (78)

. 1 n da
¢"(a) + (dz - ;)4’(0) ™ 5;(#(0)

+ L Z@=0 (79)

or

n 0aof, 140

Z(a) +E’j ™ 5}4’(0) + p 6y¢(a)
- ﬂ;2'(a)=o. (80)

ior dy

5.2. Resolution methods

Three methods are considered: a calculation by
expansion in power series of «, and two other methods,
valid for each value of the wave number. Details of the
calculations concerning these methods can be found in
a report by Spindler [18].

Expansion in power series of a. An approximate
solution of the eigenvalue system (68—76) is obtained
for low values of «, developing the functions ¢ and Z as

O(y) = do(y) + 2, (y) + 0(“2)

(81)
Z(y) = Zo(y) + aZy(y) + 0(%).
The functions are normalized by setting
S=1 82)

The solutions of the first- and second-order systems
can be found in Appendix 2. In order to calculate the
complex wave velocity c, an expansion of ¢ is not used,
because a better value is obtained from equation (76)
where ¢, ¢’ and Z’ are replaced by their expansion. The
following results are obtained

o?Re%a'®

CT: C, = [az + + (cotg Q + a*WeRe)

HMT 25:2 - B

167

2542Re%a®
T ®

y eKu N Sa%Rea’ -
2aPrRe 72
c 3eKu N 2¢*Rea® a&°
= _%
=1 prRe T 15

25¢*Re*a®
x (cotgQ + aZWeRe)] / <1 + 4'557—6”—) (84)

2

a’Re?a'’

. _ 2
CHF: C,—[a + P

y eKu +5a2Rea7 1+
2PrRe 72

+ (cotg Q + a’*WeRe)

25x2Re%a®
576 > (85)

c 2eKu N 20°Rea® a*
oal. = | ———— - —a
! aPrRe 15 3
250Red®
x (cotg Q + azWeRe)]/<1 + —a#) (86)

Method of Anshus and Goren. The principle of the
method of Anshus and Goren [19] is to replace the
base flow velocity profile 4(y) in the equations (68)
and (69) by the interfacial value a(a). The equations
become then equations with constant coefficients with
a solution of the form

@(y) = Asin B,y + Bcos B,y + Csin B,y + Dcos f,y
Z(y)=Esinfi,y + Fcos B,y + Gsin 8,y + H cos B,y
(87)

The six boundary conditions (70)—(72) and (78)-(80)
become then a homogeneous linear system of six
equations with six unknown variables: 4, B, C, D, I
and J. There exists a non-trivial solution if the
determinant is equal to zero. A relation f(«, C, Re, Pr,
Ku, We, Q) = 0 is then obtained.

The wall conditions (70) and (71) lead very simply to
a reduction in the determinant order from 6 to 4. A
numerical resolution is performed in order to calculate
the complex celerity in terms of the wave number and
the flow parameters. The calculation is initialized (x =
0) with the results obtained by the expansion method
[equations (83)—(86)].

+ Isin B,y + Jcos B,y.

Method of Solésio. The method of quadrature by
differentiation developed by Solésio [20] consists in
approximating the integral of a function by a develop-
ment which involves the values of the successive
derivatives at the two end points

n—1

¢ 1
ff(y)dyﬁ— Y Ciyydt!
0

C'(') k=0
x [f#0) + (= 1)}/ “(a)] (88)
with
_ (2n—k)!

q_m—mm'
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The two functions ¢ and Z are expanded by power
series in y at end point y = Qand in (y — a)atend
point y = a;

P
aty=0: ¢(y)= Z bJ)’I
j=0

(89)
Q .
Ziyy= 3 4y
750
aty=a: ¢(y)= Y ey—ay
j=0
(90)

Q
Z(y)= Y fly—ay.

Substituting equlati)ons (89) and (90) in the eigen-
value system, one obtains two linear homogeneous
system of P + @ ~ 1 equations, the unknowns of
which are the P + Q + 2 coefficients b, and d; on one
hand, e; and f; on the other hand. All the coefficients
are then expressed in terms of six of them. A further
system of six linear homogeneous equations is ob-
tained applying the quadrature formula withn = P —
3 to the functions ¢', ¢", ¢’ and ¢! and withn = Q —
1 to the functions Z’ and Z".

In order to have a non-trivial solution it is required
that the determinant (order 6) of the equations set be
equal to zero. This gives the relation f(x, C, Re, Pr, Ku,
We, Q) = 0. A numerical resolution is made, as it was
done also in the method of Anshus and Goren;
sufficient precision is obtained by taking P = 6 and

0 =4

Comparison. The resuits obtained from the calcu-
lation by expansion in power series are only valid for
low values of the wave number (x < 107%). The
deviation from the other methods increases when the
Reynolds number becomes larger. Nevertheless, the
neutral stability curves (xc; = 0) are well predicted
with the method of expansion in a.

The two other methods give almost the same resuits.
The method of Anshus and Goren was used (de-
terminant of order 4), because it requires a calculation
time twice shorter than the method of Solésio (de-
terminant of order 6). Nevertheless the method of
Solésio gives a validation of the method of Anshus and
Goren.

5.3. Stability of the flow with a preexisting film

First the study of a perturbation initiated at the
initial abscissa (x, = 0) leads to the study of the
influence of the phase change itself. A second step
consists in studying the stability of another per-
turbation, initiated at an abscissa different from zero, a
case for which the thickness variation influence can be
investigated.

Phase change influence. The calculations of the
growth factor ac; made at the initial abscissa lead to the
conclusion that the evaporation has a destabilizing
effect {increase of uc;), whereas the condensation has a
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stabilizing one (decrease of ac,) (Fig. 3). The phase
change influence increases when the Kutateladze num-
ber becomes larger, and decreases when the wave
number, Reynolds and Prandtl numbers become
larger.

In case of condensation (¢ £ —1), there exists a
critical Reynolds number below which the flow is
always stable. This critical Reynolds number appears
clearly on the neutral stability curves (xc; = 0} (Fig.4).
1ts value calculated from equations (84) and {86) for a
vertical flow reads

K ant
CT: Re, = a"[Z?_S—u g(gv“)"“:’:t
Pr p

o1
C 3/10
CHF: Re, = a~3| 150237 (y-25 [
PriLp
For a vertical water flow at 100°C (CT, Ku = 1072,

x = 0), one obtains Re, = 14.8. For a non-vertical flow,
the value of Re, corresponding to a perturbation born
at x = 0isquite the same as for an isothermal flow, for
which the calculation by expansion in power series
[21] gives
5
Re, = icotg Q. 92)

The neutral stability curves corresponding to evap-
oration and condensation cannot be distinguished
above Re = 30 for a vertical flow, and above Re, for a
non-vertical flow.

As already explained, phase change terms only
appear in the combination of the interfacial mass and
energy balance equations. The phase change effect is
then purely kinetic and not at all dynamic. The
physical interpretation is the following, Examine for
instance the case of condensation. At the trough of a
wave, the film is a little thinner than at the crest. Then
the rate of phase change is a little larger at the trough

b e e s e oot o

~
I
e

e - -
W - —

[ o o s o e o e s O o W
—
e e o — -

F1G. 3. Flow with a pre-existing film. Temporal growth factor
versus wave number. Vertical lowof water, CT, x = 0, Ku =
1072, Pr = 1.7. —— condensation ; ~ ~ gvaporation.
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FiG. 4. Flow with a pre-existing film. Neutral stability curves.
Water flow, CT, Ku = 1072 —— x = 0;——x = 0.1

and consequently an excess in condensing liquid
appears compared to what happens at the crest. This
leads to a smaller wave amplitude (stabilization).

Comparison can only be made with the study of
Kocamustafaogullari [3], where the phase change
effect is taken into account in the interfacial mass
balance, but the thickness variation is neglected. The
neutral stability curve obtained by Kocamustafaogul-
lari is given by the following equation (CHF, vertical
flow, Ku « 1):

Reox?  WeReo* _

5 3 0. 93)

en +

It has to be compared with the following equation

established from equation (86) (CHF, vertical flow,
x = 0):

2Reax’ WeRex®

2en+ —/— ———5—=0.

15 3 ®4)

Figure 5 shows that the two curves are not very
different. As a result Re. = 9.9 for Kocamustafaogul-
lari and 10.9 for our study (vertical flow of water at
100°C, g, = 4 x 10* Wm™2). A difference between
the first terms of the two equations (93) and (94)
appears because Kocamustafaogullari does not take
into account the film thickness variation [terms with
da/dx and dv/dy in equation (60)]. The difference
between the second terms can only be explained by the
different set of equations used: local equations (our
study) or equations averaged over the film thickness
(Kocamustafaogullari).

Thickness variation influence. The study of per-
turbations born at different distances shows that a
thickness decrease (evaporation) has a stabilizing

effect whereas a thickness increase (condensation) has
a destabilizing effect. For a flow with a Reynolds
number of 50, at the abscissa x = 0.01 (X = 6.4 mm)
the kinetic effect is still greater than the thickness
variation effect until about the maximum growth
factor, then becomes lower. On the other hand, at the
abscissa x = 0.1 (X = 6.4 cm), the thickness variation
effect is large and becomes greater than the phase
change effect as soon as the wave number becomes
larger than about 102 (Fig. 6).

For a Reynolds number of 250, the thickness
variation remains low at x = 0.1 (X = 55cm) (Fig. 7).
And, as the waves certainly start at a distance lower
than 50 ¢m, one concludes that the thickness variation
is of low influence on the linear stability at high
Reynolds number.

5.4. Stability of a condensation film flow

As in case of a flow with pre-existing film, the
condensation has a stabilizing effect, which is impor-
tant only for low wave number. It is found that when
the abscissa or the Reynolds number [equation (46)]
increases the condensation effect reduces: the thick-
ness increase destabilizes the flow (Fig. 8). There exists
a region near the origin (x = 0) where the flow is stable
(ac; < 0). Moreover the flow is always stable for
perturbation born at an abscissa lower than a critical
distance X, for any wave number. Calculated from
equations (84) and (86) for a vertical flow, the critical
distance is

1 Pr7 ¢ 4v2 1/11
CT: Xc=—[158 - (—) —5]
4 Ku'\p) g 95)

l 3 L7 7 J1/10
CHF: XC=—[1503 <5) —2%] .
3 p) g*viq

For water at 100°C (CT, A® = 5.5K) one obtains X,
= 3.18 cm (Re. = 5.24). The same value is given by the
Anshus and Goren method.

Stable

Unstable

¢: Condensation
e Evaporation

Lo 1Ny
I 2 5 10 2 5 10° 2

Re

FIG. 5. Flow with a pre-existing film. Neutral stability curves.

Vertical flow of water, CHF, ¢, = 4 x 10*Wm~2 x = 0.

—— Spindler [equation (94)); —— Kocamustafaogullari
[equation (93)].
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FiG. 6. Flow with a pre-existing film, Temporal growth factor

vs wave number. Vertical flow of water, CT, Ku = 1072 Re

=50.—x=0,-—x=001(X = 64mm);- —-x =0.1
(x = 6.4cm).

These results can only be compared with the study of
Unsal and Thomas [8]}, who calculate the growth
factor by means of an expansion in power series of a.
They obtain (CT, vertical flow, Ku « 1),

B Ku +16oc2Re
X =\ T 2prRe T 15

22 2502 Re?
-2 weren ) (14 27557). 00

which has to be compared with equation (84) where
Q = n/2and a = /2 [x = 1, equation (43)].

A difference appears only in the first term, cor-
responding to the interfacial mass balance equation,
which Unsal and Thomas write as:

éa’ dda ¢o

30 X =50cm

s o A 1 L
o / 0.04 0.08 C.12 0.18
a
| 2\3 15
-8x107° ]

F1G. 8. Condensation film flow. Temporal growth factor vs
wave number. Vertical flow of water, CT, Ku = 1072

5.5. Remarks

Wall thermal condition. The same effect of the phase
change as well as of the thickness variation on the flow
stability is found whatever the thermal condition is:
constant temperature or constant heat flux. The
difference is sensitive for very low wave numbers only.
The ratio of the two (CT to CHF) growth factor is
equal to 2/3 [equations (84) and (86)].

Perturbation velocity. The phase change influence
on the perturbation velocity is very low. On the other
hand the thickness variation is important (Fig. 10).

e f— — = 0 97)
éx 0t Qy
Temporal stability—spatial stability. The results are
instead of equation 60 (Fig. 9). . . . .
t 4 (Fig 9) obtained with the temporal formulation [equation
fopd
/’ = e Evaporation
c 4’ Y -«¢: Condensation
6x1073 N
F 4 N

i € A W

4 o
- / e RN
&4 ~ \\
°  2xi0® AN

-~ ~
\\ \\
~ ~
o ] 1 | ~
010 0.20 0.30 SL0ad s
-3 - \\
2x107 |~ a S SO

FiG. 7. Flow with a pre-existing film. Temporal growth factor vs wave number. Vertical flow of water, CT, Ku
= 10"%, Re = 250. —— x = 0;-—x = 0.1 (X = 55cm).
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FiG. 9. Condensation film flow. Neutral stability curves.

Water flow, CT, Ku = 10~2. —— Anshus and Goren; —-

Unsal and Thomas [from equation (96)]; - - — - expansion in
« [from equations (96) and (43)].

(53)] because it is much more convenient to make the
calculation with « as a real number. Nevertheless
spatial stability can also be considered

S'(x,y.t) = F(y)exp B (ox — wt)} 98)

(¢ complex and o real).
The same influence of both phase change and
thickness variation is found.

6. CONCLUSION

The order of magnitude analysis of the dimension-
less equations terms leads to a proper evaluation of the
influence of the different terms such as phase change

Cr

c: Condensation .
0 5}—e: Evaporation \

5 102 5 1082 5 10

Re
FiG. 10. Flow with a pre-existing film. Velocity of the most

amplified wave (ac; maximum). Vertical flow of water, CT, Ku
= 1072 x=0;—-x=001;--—-x=0.1.

terms, vapor terms and physical properties variation
terms.

For flows with a pre-existing film as well as for
condensation film flows, a phase change term has to be
taken into account in the interfacial mass balance
equation. Moreover that phase change term only is of
important influence in case of limited wall heat flux or
wall to interface temperature difference (Ku « 1).

On the other hand, in case of large wall heat flux or
wall to interface temperature difference a phase change
term in the interfacial momentum equation has to be
considered, along with some supplementary terms.
Among these a term corresponding to the vapor flow
has to be taken into account.

For low Kutateladze number, condensation has a
stabilizing effect whereas evaporation has a destabiliz-
ing one.

The calculated film thickness variation caused by
phase change has an opposite effect to the phase
change one.

Both phase change and thickness variations in-
fluence on the stability are particularly sensitive in case
of low Reynolds numbers (Re < 100).
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APPENDIX

1. Value of the scales

Transversal length in the liquid

Transversal length in the vapor

Longitudinal length in the vapor

Ratio of the liquid length scales

Ratio of the vapor length scales

Longitudinal velocity in the liquid and in the vapor
Transversal velocity in the phase k

Vapor to liquid longitudinal velocity difference at the interface
Vapor to liquid transversal velocity difference at the interface

Time in the phase k

Pressure difference in the liquid

Pressure difference in the vapor

Modified pressure difference in the vapor
Liquid to vapor interfacial pressure difference
Pressure

Temperature difference in the liquid

Temperature difference in the vapor

Temperature
2. Expansion in power series of o: value of ¢, Z,, ¢, and
2
-y
Poly) = 7

e
CT: Zy(y) = H—Z)’

CHF: Zy(y)=e

5
o [ay® o ady
= iRe| 2 — 2L -
$:(») 'e[uo 2% <‘
)5 y4
CT: Z,(y) = eiPe [— 200 g -
a 3 a2
CHF: Zl(y)=eiPe<A£——%——

Y, = [A0,4,0,X ,/Lpi,gsin Q]
Y, = M.Pr. Y, /Ku

X6, =y,M Pr X, /Ku

n. = Ku/Pr,Re,

N6 = N1/,
Ug = Uy = prLysinQ Yi,/u,
Vie =mU,,

AU, = niU./y,

AV, =n UL/,

Ty = Xy /U,

AP, = p Ui /Re,

AP, = y}PriM,p UL /Ku?

APY =nip, UL/,

AP, =nip,ULly,
PLv:PGr:P::PG[X:O’ Y=A(X,T)]
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Linear stability of liquid films with interfacial phase change

STABILITE LINEAIRE DES FILMS LIQUIDES AVEC CHANGEMENT DE PHASE A
L’ INTERFACE

Résumé—On étudie I'influence du changement de phase a I'interface sur la stabilité linéaire de I'écoulement

de films liquides sur une paroi plane. Elle n’apparait que par I'intermédiaire de '’équation de bilan de masse a

Iinterface. L’évaporation destabilise I’écoulement alors que la condensation le stabilise. I est tenu compte de

la variation d’épaisseur due au changement de phase, qui a un effet opposé a celui du changement de phase
lui-méme.

LINEARE STABILITAT VON FLUSSIGKEITSFILMEN MIT PHASENANDERUNG AN DER
GRENZFLACHE

Zusammenfassung—Untersucht wird der Einflufl der Phasenédnderung an der Grenzfliache auf die Stabilitat

einer Flissigkeitsfilm-Stromung iiber eine ebene Flache. Er ist nur in der Massenbilanz fiir die Grenzschicht

von Bedeutung. Verdunstung hat einen destabilisierenden, Kondensation dagegen einen stabilisierenden

EinfluB. Die durch den Phaseniibergang bedingte Anderung der Filmdicke wird beriicksichtigt. Thre
Wirkung auf die Stabilitit ist jener der Phaseninderung entgegengesetzt.

JUHENHAS YCTOMUYUBOCTDH XHUAKHUX IJIEHOK IPU ®A30BOM MMPEBPAIEHHUU
HA TPAHHULE PA3JIEJIA

Annotanus — Hccnenyercs BausiHue ¢a3oBOro npeBpallleHHs Ha TPAHHMLE pa3jefla HA YCTOHYMBOCTHL
OOTeKaHHs TAACTHHBI XHIKOH IUIEHKOH. DTO BIHSHHE ClEAyeT YHHTBIBATh TOJNBKO B YPABHEHMH
Mexdasnoro 6ananca maccel. Mcnapenne nectaGuiM3HMpyeT TEYeHHME, B TO BPEMs KaK KOHIEHCALHS
OKa3biBaeT CTAGMIM3HPYIOLIee BO3JEHCTBHE. YUUTBIBAETCA H3IMEHEHHE TOJILUINHBI [UIEHKH, 00YCI0B/IEH-
HOe (pa30BbIM MPEBPALICHAEM, BIUSHUE KOTOPOrO Ha YCTOHYMBOCTh TEYEHHsS NPOTHBONOJIONKHO.
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