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Abstract-The influence of the interfacial phase change on the stability of liquid film flow over a plane is 
studied. It is significant in the interfacial mass balance equation only. Evaporation has a destabilizing 
inftuence and condensation a stabilizing one. The thickness variation caused by the phase change is taken 

into account. Its effect on the stability is the opposite of the phase change effect. 

NOMENCLATURE 

film thickness; 
dimensionless film thickness 4 A/Y,; 
Brinkman number 4 @z/&A@,; 
heat capacity ; 
velocity of the ~rturbatjon A c, + ici; 
2 + 1 in Case of evaporation, b - 1 in case 
of condensation ; 
external forces; 
gravitational acceleration ; 
enthalpy ; 
Kutateladze number 4 Cpti AO,JL; 

Vi, 

VP, 
0, 

viT 

Y, 
Y, 

interfacial velocity vector: Vi n, = 
[dA/aT] [l + (dA,‘8X)2]-“‘; 

G (Vi ’ IIt) nL + (V, ’ t) t ; 
dimensionless transversal velocity 4 V/V,; 
dimensionless interfacial transversal velocity 
difference A fv,i - V,,)/A V, ; 
Weber number g cr,‘p,U&Y~; 
dimensionless longitudinal coordinate 4 

XIX, ; 
transversal coordinate (Y = 0 at the wall) ; 
dimensionless transversal coordinate : y,< g 

y/y,; YG Li v - Y,f/YGr. 

heat of vaporization ; Greek symbols 
variation of the thermal conductivity: i+ = a, 
i*,[l t I(0 - @,)I; 83 
A iu,llJl. ; 
variation of the viscosity: p = p,[l + 
m(O - 0,)-J; 
mass transfer per unit area and per unit of 
time e p(V - Vi) .n; 

normal unit vector; 
pressure ; 
P&let number g U,Y,p,C,jI,; 
Prandtl number 3 &,,/A,; 
modified pressure g P, - gp,, sin QX + 
gPGrcosR [Y - A(X = 0, T)]; 
dimensionless pressure difference 4 (P - 

f’,)IAP, ; 
dimensionless interfacial pressure difference 

’ (P,i - PJlAPir ; 

dimensionless wave number 2 2nY,,/A; 
variation of the density: p = p,[l + 

2; //, @,)I; 

tem;er&re difference scale ; 
ratio of the length scales 4 Y,,JX,; 
temperature; 
dimensionless temperature g 
(0 - @,)/A@,; 
wavelength ; 
thermal conductivity; 
dynamic viscosity ; 
density; 
surface tension; 
viscous stress tensor ; 
angle of inclination of the plane to the 
horizontal. 

dimensionless modified pressure difference 
J? (P* - P;),‘AP; ; Indices 
heat flux ; C, 
Reynolds number 4 U,Y,p,/p, ; 
stress tensor; 
dimensionless time 4 T/T,; 

tangential unit vector ; 
dimensionless longitudinal velocity 8 U/U,; 
dimensionless interfacial longitudinal 
velocity difference 4 (U,, - ULi)/AU, ; 
velocity vector; 

vapor ; 
interface; 
4 (G, L); 
liquid ; 
scale ; 
saturation; 
wall; 
first-order; 
second-order. 
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1. INTRODUCTION 

THF FLOW of liquid films occurs in some natural 
phenomena (rainwater flow) as in many industrial 

plant (evaporators, condensers, nuclear reactors, etc.). 
The waves which propagate at the film surface increase 
the interfacial transfers [I]. A way to predict their 

existence is to study the linear stability of the flow. 
The studies of the linear stability of isothermal film 

flow are numerous [2], Only some authors dealt with 
film flows with wall heat flux and interfacial phase 
change. Kocamustafaogullari [3] uses balance 
equations averaged over the film thickness. He 
accurately takes into account the phase change 
influence but neglects the film thickness variation. 
Bankoff [4], Marschall and Lee [5] and Lin [6], take 
into account the phase change in the interfacial 

momentum balance equation only. A detailed 

criticism of the equations they use was made by 
Spindler, Solesio and Delhaye [7]. Finally Unsal and 
Thomas [S], for a condensation film flow only, 

accurately take into account the phase change, but 
make some unjustified simplifications. 

The aim of this work is to study the linear stability of 

a liquid film flowing over an inclined plane with wall 
heat flux and interfacial phase change, without any 
imposed vapor flow and particularly to make obvious 
the phase change influence on the stability. 

2. EQUATIONS GOVERNING THE FLOW 

2.1. General forn7 
The equations governing the flow are the mass, 

momentum and energy balance equations in the liquid 
and vapor phase, and at the interface. The fluid is 
Newtonian and the variations of its physical properties 
are considered. The only material property of the 
interface which is taken into account is the surface 
tension. No vapor flow is imposed, but the vapor layer 

set into motion by the film flow is considered. 

The mass, momentum and energy equations in each 
phase read 

it;. + v . (pV) = 0 (1) 

l?pV 
-- + V (pVV) - pF - V .F = 0 
?T 

(2) 

-V,VP+V.q-Y’: vv=o. (3) 

The interfacial mass, momentum and energy 
equations read [9] 

t?i, + r+lo = 0 (4) 

r&V,. + r&V,; - nL FL - n,Y, 

+ V,o - (V, nk)mk = 0 (5) 

rfi,(Z,, + f v: - v, VP) + +;(I, + + v;; - v, ’ V,) 

- (1”, no) (V, - V,) - $ = 0. 

The wall conditions are constant temperature (CT) 
or constant heat flux (CHF) and the no-slip condition 

CT: O1.=OW 

or (7) 

CHF: -ALE = qW 
I 

v, = 0. (8) 

The interfacial boundary conditions are the equality 
of the liquid and vapor temperature and the no-slip 
condition : 

0, = 0,; (9) 

v,. t = v, t. (10) 

Finally, the vapor is supposed to be at saturation 

temperature, and out of the layer set into motion by the 
film flow, the vapor is at rest: 

0, = 0, (11) 

lim V, = 0. (12) 
Y-n 

2.2. Simpl$cation methodology 
To simplify the problem the order of magnitude of 

each term in the dimensionless equations is classically 
analyzed. Each variable is referred to a certain scale, so 
that the dimensionless variable and its derivative have 
a value close to one. 

The first stage of the simplification process is to 
determine the value of each scale. The following 

hypotheses are made 

(4 

(b) 

(cl 

(d) 

water at saturation under atmospheric pressure is 
chosen as reference fluid. The study can be 
extended to other fluids if they support the same 
simplifications. It is the case for instance of 
refrigerant R 12 ; 
the ratios &p,. and pe/~~, of the vapor to liquid 
viscosities and densities are supposed to be small; 
in the moving vapor layer, viscosity forces balance 
inertia forces ; 
on the other hand, in the liquid film, viscosity 
forces balance gravity forces, inertia forces being 
negligible. Finally, the convection heat transfer is 
neglected: the heat flux essentially allows the 
phase change to take place. 

Considering the dimensionless equations, these 
hypotheses lead to the determination of all the scales 
[lo]. The results are given in Appendix 1. All the scales 
are expressed in terms of two of them, the liquid 
temperature difference scale A@,, and one of the liquid 
length scales, Y,_, or XL,, or in terms of two 
dimensionless numbers, the Reynolds number Re and 
the Kutateladze number Ku, which represents the 
ratio of the convective heat to the heat of vaporization. + a,. n, + qc; n,; - (f ‘,, n7.) . W,. - VP) 



As a consequence of neglecting the convection in the 
liquid film, the following limitation has to be 

introduced 

Ku<< 1 

or 

The convection is negligible if the wall to interface 
temperature difference (or the wall heat flux) is not too 
large. For saturated water under atmospheric pressure 
(L = 2.3 x lo6 J kg- ‘, C, = 4.2 x 103Jkg-‘K-‘),a 
Kutateladze number limitation of lo-’ corresponds to 

a AOr, limitation of 5.5 K. 
The main result is the value of the liquid length 

scales ratio, 

KU 
VI. = - 

Pr,Re, 
(14) 

Vapor balance equations (index G is omitted) 

du+eEO 
dx aJ (19) 

~~+v~+‘l~~-9~!&g=0 (20) 

al% au ap* as a5 
uLI.y+v-+---_2i?y2-;=o. 

ay ay (21) 
6) 

Interfacial balance equations 

which on account of condition (13) is much less than 
one (for water at 100°C Pr, = 1.7). The significance of 
equation (14) is that the conduction heat balances the 
vaporization heat (Ku is the convection to 
vaporization ratio; qLPr,ReL is the convection to 
conduction ratio). As the transversal to longitudinal 
liquid velocities ratio is also equal to v]~(V,,/U,, = aJ, 

equation (14) gives an evaluation of the non- 
parallelism of the flow, i.e. of the transversal velocity 
scale (for the isothermal base flow, VL = 0). 

t'L - uLax - t'i = y,(UL - u,a,) (22) 

pi - (uL - uLaJ2 - 2y, ““+&Tfwe c “I 
n&L ayI, 2~‘~ ir ax: 

= (WLA@~, - YA(u~ - uLaJ2 

(23) 

(24) 
It is now possible to deal with the second stage of the 

simplification process, which is the calculation of the 
order of magnitude of the different terms in the 

dimensionless equations. Details of this work can be 
found in the report by Spindler [lo] for the base flow 
equations as well as for the perturbed flow equations. 

The Kutateladze number is chosen having a value 
close to lo-’ and the Reynolds number to vary 
between 1 and lo3 (the limiting value of laminar flow 
as given by Fulford [ 1 l] is Re = 1200). 

Terms with a value close to one (first-order, left-hand 

side of the equations below), as well as terms with a 
very close to 10-2 (second-order, right-hand side of 

the equations) are retained. The lower are discarded. 

uL - uLax + $ = -pL AO,,(v,, - uLaX) (25) 
L 

Boundary conditions : 
at the wall (yL = 0) 

3. BASE FLOW 

3.1. Simpkfied equations 

UL = 0 (26) 

CL = 0 (27) 

CT: 0,,-e=O 1 
or 

J 

(28) 

aoL 30, 
CHF: aye + e = -IA@,B,~ 

at the interface, y, = u(xL) 

ui + axvi = 0 (29) 

e 

L 
= A%XL, o,x,x’[’ + %(E + ‘$)I (30) 

eG - xc = 
KU4 

PrtRe%M, 
““g - t/I>xG cotg R (31) 

I G 

at infinity 
(15) 

lim uG = 0 (32) 
Y.-r I 

lim vG = 0. (33) 
Y,, + ~, 

The base flow (steady-state flow) equations are 
obtained by setting all the time derivatives to zero. 

Liquid balance equations (index L is omitted) 

au -+;= -,A@,[,(~+$)+u~+L~;] ax 

cotg R + $ = -cotg apA@,@ 

3.2. First-order solution 

Taking into account that the liquid pressure 
difference scale is always very large compared to the 
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propagating at the film surface also contribute to the 
dry-out process. The theoretical dry-out length has the 
following value 
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interfacial pressure difference scale, the liquid balance 
equations (15))( 18) together with the interfacial 
balance equations (23))(25) and boundary conditions 
(26)-(28) and (30) can be solved. The first-order 
solution reads 

4” 
u. = a,y - - 

2 
(34) 

(35) 

Ret’3vz3 Lp,, 

= 4(g sin Q)lj3 A@,,& 

(41) 

CHF: XF+ 
Yz,Lpi,g sin R Re,Lp,, 

For a vertical flow of saturated water at 100°C (pL, = 
9.6x 102kgmm3;L=2.3 x 106Jkg-‘;&,=6.8 x 
10-r W ,-I K-r. pLr = 2.8 x 10e4 kg m-l s-l), 
with A@,, = 5.5’K (Ku = lo-*) or q, = 4 x 
104W rn-’ (Ku = 1.0 x 10e2 for Re, = 93),weobtain 01 (37) 

CHF: 0, = e(a, - y). J 

The value of aa depends on the flow configuration : 
a flow with a pre-existing film or a condensation film and 
flow. 

PO = co& W0 < Y) (36) 

3.3 FIow with a pre-existing,film 

The flow with a preexisting film (Fig. 1) depends on 
both the thermal wall condition and on the initial 
thickness, which can be chosen as the transversal 
length scale Y,,. The initial dimensionless thickness 

then reads 

aa = 1 (38) 

and the Reynolds number, in term of the initial 
thickness 

Re,. = g sm fiY~,/v~, (39) 

Inserting equations (34), (35) and (37) into equation I 

(25), we obtain with condition (38) the following 

results : 

CT: a, = (1 - 4ex)‘j4 
(40) I 

CHF: a, = (1 - 3t~$‘~. 

In case of evaporation (e g + lk we can calculate a 
dry-out length which is only theoretical, because on 
one hand the model used is no longer valid near the 

dry-out point, and on the other hand the waves 

Y 

0 h cl 

Evaporation 
X 

3q&., = ___. 3qw 

Xr = 0.16 m 

X, = 0.27 m 
for Re, = 50 

X, = 8.8 m 

X, = 5.4 m 
for Re, = 1000 

3.4. Condensation,film flow 

A condensation film flow (Fig. 2) depends only on 

the wall thermal condition. The initial thickness 
condition reads 

a,(O) = 0 (42) 

and leads to the following result : 

CT: aa = (4~)“~ (43) 

which has been well known since the work of Niisselt 

L1.4 
CHF: a,,(x) = (3~)“~ (44) 

which was recently obtained by Fujii, Uehara and Oda 

P31. 
The dimensional form of equations (43) and (44): 

CT: A,(X) = 
4 A&.,R,,p,,X 1’4 

L&g sin Q 1 (45) 

CHF: A,(X) = [;P;;;,$J’3 

FIG. 1. Flow with a preexisting film. 
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FIG. 2. Condensation film flow. 

are expressed in term of the abscissa X, without any 
requirement of the length scale value. 

Consequently, we choose the current abscissa X as 
the longitudinal length scale XLI, as for classical 
boundary layers. The Reynolds number then reads, in 
term of the current abscissa, 

CT : Re, = [g sin RAO~,X31~&/L3&,]’ i4 t461 

CHF : Re, = eq,XILpL,,. 

Nevertheless, the model used is not ofcourse valid near 
the initial point, 

3.5. Second-order solution 
The complete second-order solution of the liquid 

equations can be found in the report by Spindler [lo]. 
Only the dimensionless film thickness (CT) is 
presented here. It reads 

a(xL) = uo(xJ + Kua,(x,) + O(Ku2) (47) 

where a,,(xr) is given by equations (40) (43) or (44) and 
a, (xJ reads 

al(xL) = -e[a,(x,) - so(O)] 

x [BL(4e + 3) - 3m, + 2!,] - & +f(xL) 

with 

(48) 

r c&x)$ - 3ef(x,) = 
[ 

&XL) a + - ~ - 
L L 2prL ax, 1 

I f(0) = 0. 

Equation (48) agrees with the following result of Unsal 
[ 141 for a condensation film flow (e k - 1; a,(O) = 0), 

in which neither the liquid property variations, nor the 
vapor influence are taken into account 

%(XL) = %(XL) ( & - gj ! . (50) 
L 

Vapor flow terms appear in the second-order 
solution of the liquid flow. These terms (among others 

&.&dy,) can be calculated only by resolving the 
complete system of equations governing the vapor 

flow [equations (19)-(21) (22) (29), (32) and (33)]. 
This resolution involves heavy calculations except in 
the case of condensation film flow with constant wall 
temperature and a low value of qG (ctassical boundary- 
layer type equations). 

4. PERTURBED FLOW 

4.1. Multiple scale method 
The base flow depends on the abscissa x and as a 

consequence, a perturbation can be from a 

mathematical point of view only be written under the 
following form 

f '(XL, Y,, r,.) = F(xL, yt) exp (arr) (51) 

(a is a complex number). 
Nevertheless the multiple scale method, developed 

among others by Bouthier [15] and Eagles and 
Weissman [16] for quasi-parallel flows (V K U), 

assumes a sinusoidal perturbation 

f ‘(XL, Y,, t,.) = a,, YL) 

r, 
a(x) dx - wt, (52) 

where the wave number (depending on x) appears as 
the x-derivative of the phase function. Only the spatial 
stability is considered (a complex, w real) because 
precisely the spatial variations of the perturbation 

characteristics are taken into account. 
This method uses the first and the second order 

equations of the base flow as well as of the perturbed 
flow. Consequently the main difficulty is the problem of 
solving first the vapor base flow and then the vapor 
perturbed flow [lo]. As a result the multiple scale 

method is discarded and replaced by a simpler but less 
accurate one, the local approximation method, which 
besides is the first step of the multipie scale method. 

4.2. Local approximation method 
In the local approximation method the x-dependent 

flow is replaced by its local value at a fixed abscissa x0. 
The perturbation is then 

f’(xl., Y,, tL) = Fro (Y,,) ev [;. .,_,,,,]. - ( 

We no longer consider the x-dependency of the 
characteristics of one perturbation, but we can cal- 
culate the characteristics value of a perturbation 
initiated at the given abscissa x0 only. 

The dimensionless wave number a is defined with 

Y, as length scale in order to study perturbations the 
wave length of which has values close to the film 
thickness. 

4.3. Simplijed equations 
The variables are written asf+f’, wherelis the base 

flow variable and f' its perturbation. Taking into 
account the base flow equations and discarding all the 
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nonlinear perturbation terms give the perturbed flow 
equations. 

The order of magnitude of the different terms is 
examined. In this comparison an x- or t-derivative of 
a perturbation term corresponds to a multiplication 
of function F [equation (53)] by l/q,. (vr. << 1). 

Only the first-order terms are needed in the local 
approximation method and are presented here. 
Second-order terms and those corres~nding to the 
vapor flow can be found in Spindler’s dissertation [17]. 
From now on, the index L is always omitted. 

Liquid balance equations : 

(54) 
&’ ?,’ 

--- + E = 0 
(3x 

Interfaciat balance equations : 

Boundary conditions : 
at the wall, y = 0 

li = 0 (61) 

?_I’ = 0 (62) 

(63) 

at the interface, y = so(x) 

O.++jL 0. 

The system (54)-(64) differs from the corresponding 
system of an isothermal flow by the coupling between 
the thermal and dynamical problems through equa- 
tion (60), a combination of the interfacial energy and 
mass balance equations. For an isothermal flow, the 
corresponding equation reads 

7 1 ad u’-~o~__=o, 
ax at 

The reason why the phase change appears only in 
the interfacial mass and energy balance equations is 

the strong limitation imposed on the Kutateladze 
number or on the temperature difference scale A@,. 

If, for instance, a value KU = 0.1 and a value Re = 
10 were chosen, the phase change term in the in- 
terfacial momentum equation would have an order of 
magnitude of 1 (first order), the convection and inertial 
terms in the liquid of 0.1, and physical properties 
variation terms of 0.5 (viscosity). 

NevertheIess, if convection, inertia and physical 
properties variation are neglected, the interfacial 
momentum balance equation of the perturbed flow 
would read (first order) 

Three supplementary terms appear in comparison 
with equation (59): 

The phase change term 

and two vapor terms GGo and p*’ 

[fir,&,) = -n~?a,/f?x, given in [lo]]. 

Consequently, if the phase change term has to be 
taken into account in the momentum balance equa- 
tion, the term p*’ has also to be considered, and can 
only be calculated after solving the whole vapor 
perturbed equations set. 

S. STABILITY STUDY 

5.1. Eigenwlue system 

The following perturbations of the stream function, 
temperature and thickness are introduced in the 
perturbed flow equations 

a’(x,t) = Sexp//:(x - (.()I_ 

After some classical rearrangements, the following 
eigenvalue system is obtained (index 0 of base first- 
order system is omitted): 

#l”(y) - 2a’@‘(y) + a’+(y) = i&Re 

x (6 - d[ViY) - cx2#(r)] - c$#(y) 
‘i 1 

(68) 

Z”(y) - a2Z( y) = im.Pe 
L 

(U - c)Z( y) - :;4( y) 1 (69) 

&or = 0 (70) 

sb’(O) = 0 (71) 
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CT: Z(O)=0 
1 

CHF: Z’(O)=Oj 
(72) 

@“(a) + [Reia(c - U) - 3a*]@(a) 

- ia(cotg0 + a*WeRe)S = 0 (73) 

&(a) + c&$(a) - S = 0 (74) 

Z(a) + 5s = 0 
aY 

rS = 4(a) + fa E@(a) - iz’(a) (76) 

r 4 c - u(a) + - - 
ia ay .’ 

(77) 

The four interfacial conditions (73)-(76) can be 
reduced to three by eliminating the constant 5: 

4”‘(a) + [Reia(c - U) - 3a*]@(a) 

- ia 
(cotg R + x2 WeRe) 

c-u 
4(d) = 0 (78) 

v 30 -- -Z’(a) = 0. (80) 
iar ay 

5.2. Resolution methods 
Three methods are considered: a calculation by 

expansion in power series of a, and two other methods, 
valid for each value of the wave number. Details of the 
calculations concerning these methods can be found in 
a report by Spindler [18]. 

Expansion in power series of a. An approximate 
solution of the eigenvalue system (68-76) is obtained 
for low values of a, developing the functions I$ and Z as 

&Y) = 40(y) + a4,(y) + o(a*) 
(81) 

Z(Y) = G(Y) + O%(Y) + Wa*). 

The functions are normalized by setting 

s= 1. (82) 

The solutions of the first- and second-order systems 
can be found in Appendix 2. In order to calculate the 
complex wave velocity c, an expansion of c is not used, 
because a better value is obtained from equation (76) 
where $,d’ and Z’ are replaced by their expansion. The 
following results are obtained 

CT: C,= 
a*Re’a” 

a”+4 + (cotg R + a2 WeRe) 

5a’Rea’ >I/( 25a2Re2a8 
----++ 

72 
l+ 

576 
(83) 

3eKu 2a2Rea6 a3 
aci = ---+ 

a*PrRe 
~ --a* 

15 3 

x (cotgR + a’WeRe) 1 + 
25a2Re2a8 

576 > 
(84) 

a’Re*a” 
CHF: C,= 

[ 
a’+~ + (cotg R + a2 WeRe) 

( 

eKu 5a’Rea’ 
p+--- 

’ 2PrRe 72 >I’( 1+ 
25a2Re2aa 

576 > 
(85) 

2a2Rea6 a3 
aC, = 

[ 

2eKu 
---+ ~ - -a2 
aPrRe 15 3 

x (cotgR + a*WeRe) 1 + > (86) 

Method of Anshus and Goren. The principle of the 
method of Anshus and Goren [19] is to replace the 
base flow velocity profile c(y) in the equations (68) 
and (69) by the interfacial value $a). The equations 
become then equations with constant coefficients with 
a solution of the form 

4(y) = A sin Ply + B cos /Ity + C sin j12y + D cos B2y 

Z(y) = E sin pry + F cos pry + G sin p2y + H cos B2y 

+ I sin jI3y + J cos p3y. (87) 

The six boundary conditions (70)-(72) and (78)-(80) 
become then a homogeneous linear system of six 
equations with six unknown variables: A, B, C, R, I 
and J. There exists a non-trivial solution if the 
determinant is equal to zero. A relationf(a, C, Re, Pr, 
Ku, We, 0) = 0 is then obtained. 

The wall conditions (70) and (71) lead very simply to 
a reduction in the determinant order from 6 to 4. A 
numerical resolution is performed in order to calculate 
the complex celerity in terms of the wave number and 
the flow parameters. The calculation is initialized (a = 
0) with the results obtained by the expansion method 
[equations (83)-(86)]. 

Method of Solesio. The method of quadrature by 
differentiation developed by Solesio [20] consists in 
approximating the integral of a function by a develop- 
ment which involves the values of the successive 
derivatives at the two end points 

s 

(I 

0 

f(y)dy = & “$ C;+,ak+’ 
0 k-0 

x [f’“(O) + (- l)ktf’k’(a)] (88) 

with 

c” = (2n - k) ! 
k (n- k)!k!’ 

HMT 25: 2 - B 
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The two functions 4 and Z are expanded by power 
series in y at end point y = 0 and in ( y - a) at end 
point y = a; 

aty=O: 4(y)= 5 bjy’ 
j=O 

Z(y) = 5 djv’ 

‘“PO 

(89) 

aty=a: Cp(y)= C ej(y--ay’ 
j=O 

(90) 

Z(y) = 5 jj(Y - ay’. 

Substituting eq&?!ons (89) and (90) in the eigen- 
vaiue system, one obtains two linear homogeneous 
system of P + Q - 1 equations, the unknowns of 
which are the P + Q + 2 coefficients bj and dj on one 
hand, ej andfj on the other hand. All the coefficients 
are then expressed in terms of six of them. A further 
system of six linear homogeneous equations is ob- 
tained applying the quadrature formula with n = P - 
3 to the functions $‘, Cp”, 4”’ and 41v and with n = Q - 
1 to the functions 2’ and Z”. 

In order to have a non-trivial solution it is required 
that the determinant (order 6) of the equations set be 
equal to zero. This gives the relation_@, C, Re, Pr, Ku, 
We, C2) = 0. A numerical resolution is made, as it was 
done also in the method of Anshus and Goren ; 
sufficient precision is obtained by taking P = 6 and 
Q = 4. 

Comparison. The results obtained from the calcu- 
lation by expansion in power series are only vaiid for 
low values of the wave number (tl 6 lo-‘). The 
deviation from the other methods increases when the 
Reynolds number becomes larger. Nevertheless, the 
neutral stability curves (UC, = 0) are well predicted 
with the method of expansion in u. 

The two other methods give almost the same results. 
The method of Anshus and Goren was used (de- 
terminant of order 4), because it requires a calculation 
time twice shorter than the method of Solesio (de- 
terminant of order 6). Nevertheless the method of 
Solesio gives a validation of the method of Anshus and 
Goren. 

5.3. Stability of the frow with a preexisting j/m 
First the study of a perturbation initiated at the 

initial abscissa (x,, = 0) leads to the study of the 
influence of the phase change itself. A second step 
consists in studying the stability of another per- 
turbation, initiated at an abscissa different from zero, a 
case for which the thickness variation influence can be 
investigated. 

Phase change inftuence. The calculations of the 
growth factor c[ci made at the initial abscissa lead to the 
conclusion that the evaporation has a destabilizing 
effect (increase of ar,), whereas the condensation has a 

stabilizing one (decrease of tlci) (Fig. 3). The phase 
change influence increases when the Kutateiadze num- 
ber becomes larger, and decreases when the wave 
number, Reynolds and Prandtl numbers become 
larger. 

In case of condensation (e g - l), there exists a 
critical Reynolds number below which the flow is 
always stable. This critical Reynolds number appears 
clearly on the neutral stability curves (ctci = 0) (Fig. 4). 
Its vaIue calculated from equations (84) and (86) for a 
vertical flow reads 

CT: Re, = am3 225: t(g~~)-r~’ 
I 

3.‘11 

(91) 

3110 

CHF: Re, = us3 
C eq d 

15Oz PrI.Lp (gv)-2’3 . 
I 

For a vertical water Row at 100°C (CT, Ku = lo-‘, 
x = 0), one obtains Re, = 14.8. For a non-vertical flow, 
the value of Re, corresponding to a perturbation born 
at x = 0 is quite the same as for an isothermal flow, for 
which the calculation by expansion in power series 
[21] gives _ _ 

Re, = Gcotg n. (92) 

The neutral stability curves corresponding to evap- 
oration and condensation cannot be distinguished 
above Re = 30 for a vertical flow, and above Re, for a 
non-vertical flow. 

As already explained, phase change terms only 
appear in the combination of the interfacial mass and 
energy balance equations. The phase change effect is 
then purely kinetic and not at all dynamic. The 
physical interpretation is the following. Examine for 
instance the case of condensation. At the trough of a 
wave, the lilm is a little thinner than at the crest. Then 
the rate of phase change is a little larger at the trough 

FIG, 3. Flow with a pre-existing film. Temporai growth factor 
versus wave number. Vertical Aow of water, CT, x = 0, Ku = 

lo-‘, Pr = 1.7. - condensation ; -- - evaporation. 
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Re 

FIG. 4. Flow with a preexisting film. Neutral stability curves. 
Water flow, CT, Ku = IO-*. __ 5 = O;--s = 0.1. 

and consequently an excess in condensing liquid 
appears compared to what happens at the crest. This 
leads to a smaller wave amplitude (stabilization). 

Comparison can only be made with the study of 
Kocamustafaogullari [3], where the phase change 
effect is taken into account in the interfacial mass 
balance, but the thickness variation is neglected. The 
neutral stability curve obtained by Kocamustafaogul- 
lari is given by the following equation (CHF, vertical 
flow, Ku << 1): 

Rea2 WeReu4 
ev + -------_()o. 

9 3 
(93) 

It has to be compared with the following equation 
established from equation (86) (CHF, vertical flow, 
x = 0): 

2Rea’ WeRea 
--------_~. 2erl + 15 3 

(94) 

Figure 5 shows that the two curves are not very 
different. As a result Re, = 9.9 for Kocamustafaogul- 
lari and 10.9 for our study (vertical flow of water at 
lOOC, 4, = 4 x lo4 W mm2). A difference between 
the first terms of the two equations (93) and (94) 
appears because Kocamustafaogullari does not take 
into account the film thickness variation [terms with 
da/ax and &lay in equation (6O)J The difference 
between the second terms can only be explained by the 
different set of equations used: local equations (our 
study) or equations averaged over the film thickness 
(Kocamustafaogullari). 

Thickness variation injluence. The study of per- 
turbations born at different distances shows that a 
thickness decrease (evaporation) has a stabilizing 

eflect whereas a thickness increase (condensation) has 
a destabilizing effect. For a flow with a Reynolds 
number of 50, at the abscissa x = 0.01 (X = 6.4 mm) 
the kinetic effect is still greater than the thickness 
variation effect until about the maximum growth 
factor, then becomes lower. On the other hand, at the 
abscissa x = 0.1 (X = 6.4 cm), the thickness variation 
effect is large and becomes greater than the phase 
change effect as soon as the wave number becomes 
larger than about 1O-2 (Fig. 6). 

For a Reynolds number of 250, the thickness 
variation remains low at x = 0.1 (X = 55 cm) (Fig. 7). 
And, as the waves certainly start at a distance lower 
than 50 cm, one concludes that the thickness variation 
is of low influence on the linear stability at high 
Reynolds number. 

5.4. Stability of a condensation film pow 

AS in case of a flow with pre-existing film, the 
condensation has a stabilizing effect, which is impor- 
tant only for low wave number. It is found that when 
the abscissa or the Reynolds number [equation (46)] 
increases the condensation effect reduces: the thick- 
ness increase destabilizes the flow (Fig. 8). There exists 
a region near the origin (c( = 0) where the flow is stable 
(ctci < 0). Moreover the flow is always stable for 
perturbation born at an abscissa lower than a critical 
distance X,, for any wave number. Calculated from 
equations (84) and (86) for a vertical flow, the critical 
distance is 

CT: X, = ~[158~~;)‘~l”” (95) 

CHF: X~=;[1503&$1”‘“. 

For water at 100°C (CT, A0 = 5.5 K) one obtains X, 
= 3.18 cm (Re, = 5.24). The same value is given by the 
Anshus and Goren method. 

a 

t 
5- 

Stable 
2- 

c’ Condensation 
e Evaporation 

Re 

FIG. 5. Flow with a preexisting film. Neutral stability curves. 
Vertical flow of water, CHF, y, = 4 x lo4 W m-‘, x = 0. 
- Spindler [equation (94)] ; - Kocamustafaogullari 

[equation (93)]. 
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Condensatlor 

FIG. 6. Flow with a preexisting tilm. Temporal growth factor 
vs wave number. Vertical flow of water, CT, Ku = lo-‘, Re 
= 50.---x = O;--x = 0.01 (X = 6.4mm);-,-.x = 0.1 

(x = 6.4cm). 

B 0 

-6x IO 7 

These results can only be compared with the study of 
Unsal and Thomas [8], who calculate the growth 
factor by means of an expansion in power series of CL 
They obtain (CT, vertical flow, Ku << l), 

/ Ku 16a’Re 
ac, = 

\ 
-___ +--- 

2PrRe 15 

- y WeRex4)/(l + T)- (96) 

which has to be compared with equation (84) where 
Q = n/2 and a = ,/2 [.x = 1, equation (43)]. 

A difference appears only in the first term, cor- 
responding to the interfacial mass balance equation, 
which Unsal and Thomas write as: 

instead of equation 60 (Fig. 9). 

FIG. 8. Condensation film flow. Temporal growth factor vs 
wave number. Vertical flow of water, CT, Ku = lo-‘. 

5.5. Remurks 

Wall thermal condition. The same effect of the phase 
change as well as of the thickness variation on the flow 
stability is found whatever the thermal condition is: 
constant temperature or constant heat flux. The 
difference is sensitive for very low wave numbers only. 
The ratio of the two (CT to CHF) growth factor is 
equal to 2/3 [equations (84) and (86)]. 

Perturbation celocity. The phase change influence 
on the perturbation velocity is very low. On the other 
hand the thickness variation is important (Fig. 10). 

Temporal stability-spatial stability. The results are 

obtained with the temporal formulation [equation 

e Evaporation 

,c Condensation 

FIG. 7. Flow with a preexisting film. Temporal growth factor vs wave number. Vertical flow of water, CT, Ku 
= 10e2, Re = 250. _ x = 0; -- x = 0.1 (X = 55 cm). 
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a = 90” 

0 l5- 

a O.lO- 

005- Unstable 

0 
5 IO 15 20 25 30 35 

Re 

2 4 6810 15 20 25 30 35 40 

x cm, sz=90” 

FIG. 9. Condensation film flow. Neutral stability curves. 
Water flow, CT, Ku = lo-‘. ~ Anshus and Goren ; -- 
Unsal and Thomas [from equation (96)] ; - .- expansion in 

a [from equations (96) and (43)]. 

(53)] because it is much more convenient to make the 
calculation with a as a real number. Nevertheless 
spatial stability can also be considered 

(a complex and o real). 
The same influence of both phase change and 

thickness variation is found. 

6. CONCLUSION 

The order of magnitude analysis of the dimension- 
less equations terms leads to a proper evaluation of the 
influence of the different terms such as phase change 

0 

c Condensation 

5 e' Evaporation “\ 

‘1 

5 IO 2 5 to2 2 5 IO3 

Re 

FIG. 10. Flow with a preexisting film. Velocity of the most 
amplified wave (ac, maximum). Vertical flow of water, CT, Ku 

= 1o-z. ----x = o;--x = O.Ol;-.-.x = 0.1. 

terms, vapor terms and physical properties variation 
terms. 

For flows with a pre-existing film as well as for 
condensation film flows, a phase change term has to be 
taken into account in the interfacial mass balance 
equation. Moreover that phase change term only is of 
important influence in case of limited wall heat flux or 
wall to interface temperature difference (Ku CC 1). 

On the other hand, in case of large wall heat flux or 
wall to interface temperature difference a phase change 
term in the interfacial momentum equation has to be 
considered, along with some supplementary terms. 
Among these a term corresponding to the vapor flow 
has to be taken into account. 

For low Kutateladze number, condensation has a 
stabilizing effect whereas evaporation has a destabiliz- 
ing one. 

The calculated film thickness variation caused by 
phase change has an opposite effect to the phase 
change one. 

Both phase change and thickness variations in- 
fluence on the stability are particularly sensitive in case 
of low Reynolds numbers (Re < 100). 
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APPENDIX 

1. Value of the scales 

Transversal length in the liquid 

Transversal length in the vapor 

Longitudinal length in the vapor 

Ratio of the liquid length scales 

Ratio of the vapor length scales 

Longitudinal velocity in the liquid and in the vapor 

Transversal velocity in the phase k 

Vapor to liquid longitudinal velocity difference at the interface 

Vapor to liquid transversal velocity difference at the interface 

Time in the phase k 

Pressure difference in the liquid 

Pressure difference in the vapor 

Modified pressure ditTerence in the vapor 

Liquid to vapor interfacial pressure difference 

Pressure 

Temperature difference in the liquid 

Temperature difference in the vapor 

Temperature 

2. Expansion in power series of a; value of #,,, Z,, 4, and Z, 

Al(Y) = 5 

CT: Z,(y) = ;y 

CHF: Z,(y) = e 

Y,, = [AO,,1,,/~,,X,/Lp~,g sin Q]l 4 

Y,, = M,Pr,Y,,/Ku 

X,, = y,M,Pr,X,lKu 

qL = Ku/Pr,Re, 

v<; = ~tJr, 

u,, = u,, = pL,q sin Q Wk., 

I/‘,, = rlru,, 

Au, = d~~.rlv, 

AV, = ~~U,,/Y, 

Tkr = X,,PJ,, 

AP, = pr,Uf,iRe,. 
AP,, = yfPr~M,p,U~/Ku’ 

AP: = v&.,ULl~r 

APi, = v&GJtIs, 
P,, = P,, = P: = P,[X = 0, Y = A(X, T)] 

CT: A@,, a e(O, - 0,) 

CHF: A@,,, A eq,Y,,/i.,, 

A@,, = (dOs/dP,)y~M,Pr~,,Ui/Ku’Re: 

o,, = o,, = O,s(X = 0). 

d,(y) = iRe 

CT: Z,(y) = eiPe 

CHF: Z,(y)=eiPe 
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STABILITE LINEAIRE DES FILMS LIQUIDES AVEC CHANGEMENT DE PHASE A 
L’INTERFACE 

Resume-On &die I’influence du changement de phase a I’interface sur la stabilite lineaire de I’ecoulement 
de films liquides sur une paroi plane. Elle n’apparait que par I’intermediaire de I’iquation de bilan de masse a 

l’interface. L’evaporation destabilise l’ecoulement alors que la condensation le stabilise. II est tenu compte de 

la variation d’ipaisseur due au changement de phase, qui a un effet oppose a celui du changement de phase 

lui-meme. 

LINEARE STABILITAT VON FLUSSIGKEITSFILMEN MIT PHASENANDERUNG AN DER 
GRENZFLACHE 

Zusammenfassung-Untersucht wird der EinfluR der Phasenanderung an der Grenzfliiche auf die Stabilitat 
einer Fliissigkeitsfilm-Stromung iiber eine ebene Flache. Er ist nur in der Massenbilanz fur die Grenzschicht 
von Bedeutung. Verdunstung hat einen destabilisierenden, Kondensation dagegen einen stabilisierenden 
EinfluR. Die durch den Phaseniibergang bedingte Anderung der Filmdicke wird beriicksichtigt. Ihre 

Wirkung auf die Stabilitat ist jener der Phasensjlderung entgegengesetzt. 

JIMHEHHAtl YCTOI+4HBOCTb ~MAKMX IUIEHOK IlPM @A30BOM flPEBPAIIlEHWM 
HA FPAHHHE PASAEJIA 

Auuoraqnn- Mccnenyercs anusnue $a3oBoro npeBpameHea Ha rpamiue pa3nena Ha ycTokniBocTb 

06TcKaHux “,taCTuHbt XWtKOti TUIeHKOii. 3TO BJtAsHAe CJteL,ycT yWTbtBaTb TOJtbKO B ypaBHeHAA 

Mexl$a3HOrO 6anaHca MaCCbI. McnapcHrie necra6unssupyer reqeuue, B TO BpeMs KaK KOHfleHCauul 

oKa3btaaeT cTa6wnisapytomee Bo3neikTBue. Y’tHTbtBaeTCR u3MeHeHue TOIImuHbI nneHKH, o6ycnosnes- 
HOe $aSOBbtM TIpeBpamcHueM. BnARHue KOTOpOrO Ha yCTOi%uBOCTb TcqeHus npOTuBOnOJtOXH0. 


